\qquad

C.U.SHAH UNIVERSITY Winter Examination-2018

Subject Name : Mathematics-I
Subject Code : 4SC01MTC1
Branch : B.Sc. (All)
Semester : 1 Date : 30/11/2018 Time : 2:30 To 5:30 Marks : 70
Instructions:
(1) Use of Programmable calculator \& any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the following questions:
a) Find equation of sphere having center $(1,2,3)$ and radius 5 .
b) Solve: $y=p x+a p(1-p)$.
c) Check the exactness of the differential equation
$(a x+h y+g) d x+(h x+b y+f) d y=0$.
d) Find order and degree of the differential equation

$$
\begin{equation*}
\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+y=0 \tag{1}
\end{equation*}
$$

e) Find 11th derivative of $\sin (\pi x)$
f) True/false: every differentiable function has machlaurin's series.
g) Define: Taylor's series expansion of function.
h) Write machlaurin's series of $\log (1+\mathrm{x})$.
i) What is polar form of circle having centre at $(1,1)$ and radius 4 .

Attempt any four questions from $\mathbf{Q}-2$ to $\mathbf{Q - 8}$

Q-2
 Attempt all questions

a) Find rank of matrix

$$
\left[\begin{array}{cccc}
1 & 1 & -1 & 1 \tag{14}\\
1 & -1 & 2 & -1 \\
3 & 1 & 0 & 1
\end{array}\right]
$$

b) Solve $5 x-7 y+z=11,6 x-8 y-z=15,3 x+2 y-6 z=7$ using Cremer's method.
c) Find Eigen value of

$$
\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 3 & 1 \\
1 & 2 & 2
\end{array}\right] .
$$

Attempt all questions
a) State and prove machlaurin's series of e^{x} also deduce the machlaurin's series of cosh x.
b) Find Taylor's series of $x^{5}+4 x^{4}+6 x^{3}-4 x+1$ at $x=2$.
c) Express $\mathrm{e}^{\operatorname{sinx}}$ in powers of x upto x^{4}.

a) State and prove Lagrange's mean value theorem.
b) Apply Rolle's theorem for $f(x)=(x-1) \sin x$ in the interval $[0,1]$
c) State Cauchy's mean value theorem also apply for $f(x)=x$ and $g(x)=x+1$ in [1,2].

